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Abstract—Multiple Organ Dysfunction Syndrome (MODS) is
one of the most common and severe conditions affecting patients
admitted to intensive care units (ICUs). It is characterized by the
simultaneous failure or dysfunction of at least two organ systems.
Although no specific remedy for MODS has been identified to
date, early diagnosis and adequate organ support can signifi-
cantly improve patient outcomes. Identifying patients at risk of
developing MODS in the ICU is challenging. Currently, several
methods are used for this purpose, including scoring systems
like SOFA and MOD Score, as well as machine learning-based
approaches. However, these methods often have limitations. Some
require invasive features, making them complex to use in a smart
healthcare system. Others suffer from a lack of performance due
to various problems, which can potentially lead to unreliable
predictions. Feature selection can improve ML models’ perfor-
mance. Recently, bio-inspired feature selection techniques have
shown promise in improving the performance of machine learning
methods in many domains, but their effectiveness in MODS
prediction has not yet been evaluated. Additionally, research on
early MODS prediction, particularly utilizing time-series data
and dynamic ensemble methods, remains limited. To fill this gap,
the present research used state-of-the-art machine learning algo-
rithms, namely dynamic ensemble techniques, to predict patients
at risk of developing MODS in the ICU. Dynamic ensembles
are new methods that select an ensemble of the best-performing
models for every new test case. We compared the performance of
these models with full features and with feature selection. Three
nature-inspired meta-heuristic optimization models, namely the
binary bat algorithm (BBA), grey wolf optimization (GWO), and
genetic algorithm (GA), were evaluated to select the optimal
feature subset. The models were built using non-invasive patient
features and time-series data from the first 12 hours of ICU
admission. The results showed that feature selection significantly
improved the performance of dynamic ensemble models. Notably,
the METADES model, employing grey wolf optimization for
feature selection, demonstrated the best performance in terms
of accuracy(96.5%), F1 score (96.4%), precision (97.2%), recall
(95.7%), and area under the ROC curve (AUC) (98.4%). These
findings highlight the potential and effectiveness of our approach
for early MODS prediction in ICUs.
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I. INTRODUCTION

Multiple Organ Dysfunction Syndrome (MODS) is widely
recognized as a primary cause of death in critically ill pa-
tients, affecting 11% to 40% of adults admitted to intensive
care units (ICUs) [1]. Accordingly, the high mortality rate
of this syndrome, ranging from 44% to 76%, underlines its
seriousness. MODS typically arises in response to severe
illness or injury, often as a result of conditions like sepsis,
severe trauma, major surgery, or prolonged shock. It involves
the simultaneous dysfunction or failure of at least two organ
systems, such as the heart, lungs, liver, and kidneys, etc.
While the dysfunction is typically acute and severe, there is
potential for reversibility, especially with prompt identification
and treatment of underlying causes or triggers [2].

Despite extensive research, effective treatments for MODS
remain elusive. Current interventions have not adequately
controlled the excessive immune response or facilitated organ
recovery. This has led to invasive organ support as the primary
treatment approach in ICUs [1]. Additionally, a survey by the
American Hospital Association (AHA) revealed that there are
over 6,300 intensive care units in 3,200 acute care hospitals
in the United States, providing a total of 94,000 ICU beds
[3]. Consequently, the shortage of medical staff in ICUs
exacerbates work pressures, affecting patient care quality and
potentially leading to oversight of crucial changes in patient
conditions [4]. Therefore, rapid diagnosis becomes essential
for optimal resource allocation to the neediest patients. It’s im-
portant to note that the implementation of early-phase manage-
ment strategies, including a resuscitation approach focused on
damage control and scoring systems, has contributed to an in-
creased survival rate among injured patients upon admission to
intensive care. Hence, fundamental aspects of MODS treatment
involve early identification and support of organ functions.
Several scoring systems have been developed to assess the
severity of Multiple Organ Dysfunction Syndrome (MODS)
and predict outcomes using clinical parameters. Among these,
the SOFA score (Sequential Organ Failure Assessment) [5] is
commonly utilized. The SOFA score is designed to monitor
and predict the progression of organ failure by assessing the
function of six organ systems: cardiovascular, liver, respiratory,
coagulation, renal, and neurological [6]. Furthermore, each
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organ system is assigned a score ranging from 0 to 4, as
shown in the Table I. A higher score reflects more severe
failure. Organ failure is typically identified by a SOFA score
exceeding 2 in one of the six assessed organ systems [7].
The total SOFA score is the sum of these individual scores,
ranging from 0 to 24. However, the SOFA score is a complex
tool that necessitates meticulous patient evaluation and the
continuous collection of numerous parameters. Consequently,
it may exhibit variability in predicting the outcome of MODS.

TABLE I. SOFA SCORE PARAMETERS

Organ Systems SOFA Score
Respiratory PaO2/FiO2 and ventilation 0 to 4
Coagulation Platelet number 0 to 4
Hepatic Bilirubin 0 to 4
Cardiovascular Blood pressure and vasopressor use 0 to 4
Central nervous system Glasgow Coma Scale 0 to 4
Renal Creatinine urine output 0 to 4
Aggregate Calculated daily 0 to 24

In recent years, there has been a gradual increase in
research on intelligent intensive care units, with a focus on
monitoring and risk prediction. By leveraging modern sci-
entific and technological advancements such as 5G commu-
nication technologies, the Internet of Things, and big data
analysis, coupled with machine learning techniques[4], these
innovations hold promise in predicting the likelihood of an
individual developing MODS in the ICU.

Many researchers have employed ensemble classifiers for
clinical classification problems, with promising results [8]
[9] [10][11]. Additionally, they have also explored Dynamic
Ensemble Selection (DES) models [12][13] [14] that select an
ensemble of classifiers dynamically for each test data item.
This allows DES to identify patterns in complex domains
like biomedicine, credit scoring, and handwriting recogni-
tion instead of relying on a single classifier for the entire
dataset. While existing research on predicting Multi-Organ
Dysfunction Syndrome (MODS) in ICU patients suggests
room for improvement, we investigated DES techniques for
this purpose. Our study compares them with diverse feature
selection methods utilizing nature-based algorithms. Feature
selection helps alleviate the “curse of dimensionality,” facili-
tating faster, simpler, and potentially more performant machine
learning models. Analyzing relevant studies [15], [16], [17],
[18], [19], we identified the Binary Bat Algorithm (BBA),
Genetic Algorithm (GA), and Grey Wolf Optimization (GWO)
as effective and prevalent feature selection algorithms. Our
study employed these bio-inspired feature selection methods.

Following feature selection, we employed seven state-
of-the-art DES models (META-DES, DESP, KNORA-U,
DESKNN, KNORA-E, MCB, and KNOP) for classification.
We comprehensively evaluated their performance using metrics
like F1-measure, recall, sensitivity, precision, accuracy, and
ROC curve analysis to select the optimal classifier. Addition-
ally, Area Under the Receiver Operating Characteristic (AU-
ROC) curve analysis assessed the impact of feature selection.

Our main objective is to develop a decision support system
capable of accurately classifying and predicting patients at
risk of having MODS in the ICU using only non-invasive
features and time-series data from the first 12 hours after ICU

admission. This system has the potential for integration into a
smart healthcare monitoring system for intensive care units[8],
as illustrated in Fig. 1.

The remainder of the document is structured as follows:
Section II provides an overview of the current state of research
in MODS, followed by Section III, which outlines the proposed
methodology. Section IV presents the experimental results and
subsequent discussion. Section V addresses the limitations of
this study and suggests avenues for future research, while
Section VI serves as the conclusion.

II. RELATED WORKS

To date, extensive research efforts have been dedicated
to investigating the diagnosis of Multiple Organ Dysfunction
Syndrome (MODS).Various medical and artificial intelligence-
based methods have been employed, yielding significant re-
sults. This section undertakes a thorough examination of the
literature concerning MODS diagnosis and related triggers,
such as sepsis:

Bowen et al. [20] proposed an approach based on machine
learning for predicting multi organ dysfunction syndrome
(MODS) recovery in pediatric patients with sepsis. The authors
highlight the lack of effective predictive models for early
recovery from MODS in this patient group. The study intro-
duces a novel methodology that anticipates the transition from
MODS to milder states, utilizing datasets from Swiss and U.S.
pediatric sepsis cohorts. The model demonstrated promising
performance, achieving approximately 79.1% AUROC and
73.6% AUPRC during internal validation and 76.4% AUROC
and 72.4% AUPRC during external validation. The suggested
approach exhibits the potential for integration into electronic
health record systems, thereby aiding in patient evaluation
and prioritization within pediatric sepsis care. Furthermore, the
researchers employ SHAP values to elucidate pivotal recovery
factors as identified by the model. The study also explores
associations between predicted outcomes and factors such as
pathogens, infection sites, and age groups, contributing to an
enhanced interpretation of the model’s predictions.

Guanjun et al. [21] proposed a study to develop mod-
els to predict multiple organ dysfunction syndrome (MODS)
among trauma patients utilizing noninvasive predictors alone.
Traditional methods of predicting MODS are invasive and
difficult to implement in a pre-hospital environment. The study
uses records from 2319 patients and employs seven machine
learning methods to create real-time MODS prediction models.
A comparison was made between the models and the four
conventional scoring systems. The best-performing model is
based on LightGBM (LGBM) and Adaboost, achieving a high
AUC of 0.959 when using all parameters. Even when reducing
the parameters to non-invasive ones only, the LGBM model
still outperformed traditional scoring systems, with an AUC
of 0.940. The study concludes that the accurate, real-time
prediction approach using non-invasive features is superior
to conventional scoring systems, which could facilitate early
diagnosis and improve patient survival rates in the pre-hospital
setting.

Chang et al. [22] proposed an advanced approach to the
challenge of predicting and preventing multiple organ dys-
function syndrome (MODS), The study used machine learning
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Fig. 1. General architecture of the predictive system for MODS in ICU.

algorithms to create early warning models for MODS risk
assessment. The researchers developed a customizable model
called SuperLearner by integrating several machine learning
approaches, which resulted in high robustness in detection
and favorable assessment measures such as sensitivity and
accuracy. In addition, the deep neural network (DWNN) model
showed excellent performance, with a notable AUC of 0.960 on
the MIMIC-IV test set. This result highlighted the exceptional
predictive power of the DWNN model in the context of MODS
prediction. The research introduced additive Kernel-SHAP
and various DiCE (counterfactual explanations) to interpret
the results of the predictions and recommend interventions,
enabling the prediction of MODS risk 12 hours in advance.
The study utilized clinical features, scoring characteristics,
and database data for model training, showcasing the po-
tential application value of their approach for early MODS
prediction and intervention. The integration of Q-learning for
model selection and the combination of SuperLearner and
SubSuperLearner structures were innovative contributions. The
researchers also introduced a utility score for comprehensive
performance assessment and incorporated DiCE to facilitate
automatic intervention recommendations for improved practi-
cality.

Tunc et al. [23] introduced a solution for monitoring
sepsis-related symptoms and the condition of organ systems
without the need for lab tests. Their work proposed the Deep
SOFA-Sepsis Prediction Algorithm (DSPA), which combines
features from Convolutional Neural Networks (CNNs) with the
Random Forest (RF) algorithm to predict Sequential Organ
Failure Assessment (SOFA) scores of patients diagnosed with
sepsis using only seven vital signs collected in the Intensive
Care Unit (ICU). They evaluated their model using the MIMIC
III dataset and achieved a mean absolute error (MAE) of

0.65, a correlation coefficient (CC) of 0.86, and a root-mean-
square error (RMSE) of 1.23 in predicting SOFA scores
at the onset of sepsis. Their model demonstrated superior
performance compared to traditional machine learning and
deep learning models in regression analysis. Furthermore, they
showcased strong classification performance, achieving an area
under the curve (AUC) of 0.982 for predicting early sepsis,
surpassing previous studies. The proposed framework offers
a non-invasive and timely approach for predicting sepsis and
monitoring organ states.

Alexis et al. [24] conducted a study on multiple dysfunction
syndrome in children after congenital heart surgery involving
cardiopulmonary bypass (CPB). The study involved 306 sur-
gical patients under the age of 18 and collected biomarkers
and clinical information. The model, called PERSEVERE-
CPB, incorporated the level of interleukin 8 (IL-8) 12 hours
after bypass surgery, the change in serum chemokine ligand
3 (CCL3) between 4 and 12 hours, and the infant’s age
category. PERSEVERE-CPB was able to efficiently stratify
patients into categories of low, intermediate, and high risk
for the development of persistent MODS, demonstrating the
potential for targeted interventions and improved outcomes
through the identification of high-risk patients. The discrimi-
native performance of the model was comparable to reference
tools such as the STAT model and the PRISM III score, with
an AUROC of 0.86 (95% CI 0.81; 0.91) for discrimination
between patients with and without persistent MODS. After
10-fold cross-validation, the PERSEVERE-CPB model main-
tained good performance, with a corrected AUROC of 0.75
(95% CI 0.68-0.84).

This concise overview underscores the significant inter-
est within the scientific community regarding the diagnosis
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and prediction of Multiple Organ Dysfunction Syndromes
(MODS). Despite the limited number of studies utilizing
machine learning models for MODS prediction and the scarcity
of research involving non-invasive features, resulting in the
complexity of implementing these models into an intelligent
decision support system for early MODS prediction, it is clear
that machine learning tools have yet to achieve widespread
application in MODS diagnostic systems. This holds especially
true in developing countries, where the mortality rate due to
MODS remains alarmingly high, leaving considerable room
for improvement. In this study, we introduce a novel approach
based on a dynamic ensemble model and an advanced feature
selection method for selecting the optimal feature set. Setting
it apart from other methods, this approach is straightforward to
implement, utilizes non-invasive features to forecast the risk of
MODS occurrence in the ICU, and has exhibited outstanding
performance in the detection and prediction of Multiple Organ
Dysfunction Syndrome (MODS).

III. PROPOSED METHODOLOGY

In this study, our goal is to develop a Decision Support
System based on a predictive model for predicting which
patients are at risk of developing MODS in the ICU. To achieve
this, we compared seven state-of-the-art Dynamic Ensemble
Selection models (DES) that assess the skill of individual
classifiers from a classifier pool. The most skilled classifier,
or a set containing the most skilled classifiers, is then used to
predict the correct label for a given test sample. We formulated
a classification problem aimed at predicting the risk of a patient
developing MODS based on extracted data gathered in the
initial 12 hours following their admission to the intensive care
unit.

The evaluation of the base classifiers was carried out
through the cross-validation technique, and the DES models
were assessed using a validation test set to estimate the
ability of our model to generalize outside its trained dataset.
Throughout our research, we explored various models and
architectures, testing different feature sets by applying three
nature-based optimization techniques.

The proposed methodology is outlined and visually repre-
sented in Fig. 2.

A. Study Design and Datasource

In this study, we employed MIMIC-III, a medical database
containing anonymized records from more than 46,520 patients
admitted to the intensive care units at Beth Israel Deaconess
Medical Center in Boston, Massachusetts. The data spans from
2001 to 2012. The database has received ethical approval
for use and is managed by the Massachusetts Institute of
Technology’s Computational Physiology Laboratory (MIT)
under the PhysioNet-accredited Health Data 1.5.0 license. This
extensive database comprises 26 tables containing a diverse
range of data, such as demographic information, vital sign
measurements, laboratory test results, medical procedures,
medication records, caregiver notes, imaging reports, and mor-
tality data upon discharge. These data are interconnected using
key identifiers such as subject-ID, hadm-ID, and ICUSTAY-
ID. In order to ensure patient confidentiality, a rigorous de-
identification process was applied, aligning with the Health

Insurance Portability and Accountability Act (HIPAA) stan-
dards in the United States. This process involved the removal
of personally identifiable information, such as patient names,
phone numbers, and specific dates. Additionally, a date-shifting
method was employed to preserve temporal intervals in the
data. We obtained approval to extract data from this database
under (Record ID: 53063368).

B. Data Pre-Processing

These steps are designed to improve the overall quality
of the selected dataset. The MIMIC III dataset contains a
number of issues, such as outliers, missing values, etc. This
can be the consequence of a sensor or data transfer failure,
an error in data storage, etc. Building a model with such
poor, incomplete data is regarded as the major factor behind
underperforming models. The initial process of data prepro-
cessing involves converting raw data to a convenient and useful
format. This stage involves three distinct steps: cleaning the
data, data transformation, and data reduction. Data cleaning
focuses on resolving problems associated with missing data
and anomalies. The data transformation phase aims to re-
shape the data so that it is more adaptable for data mining.
Commonly used transformation techniques include attribute
selection, normalization, etc. Finally, data reduction avoids the
complications associated with processing large datasets. The
next subsections deal with the measures taken to deal with
these data problems.

1) Data extraction: Data were extracted from the MIMIC-
III dataset (v1.4). Apache Spark software was used to extract
baseline features (subject ID, ID of ICU stay, age, gender),
vital signs, and non-invasive features as shown in Table II
from patients meeting the criteria using SQL (Structured Query
Language) as shown in the cohort selection Fig. 3, and to
extract pertinent features to compute the SOFA scoring system.

Our decision to employ Apache Spark for data extraction
from MIMIC-III was driven by its remarkable capability to
efficiently handle large volumes of distributed healthcare data.
Spark excels in distributed processing and provides a unified
suite of tools, rendering it highly suitable for extracting and
processing complex medical data at scale. Its fault tolerance
and capacity to distribute workloads across a cluster of ma-
chines ensure the reliability and performance necessary for
analyzing clinical data from MIMIC-III.

In addition to its data extraction capabilities, Apache Spark
also offers a versatile environment for further data analysis, en-
abling researchers and healthcare professionals to gain valuable
insights from this extensive medical dataset. The combination
of MIMIC-III and Apache Spark has proven to be a powerful
solution for in-depth healthcare analytics and research.

2) Missing data handling: A thorough understanding of
data is of crucial importance when analyzing data in the
healthcare context. The challenges inherent in this field call for
proper management of missing data. Although the simplistic
method of removing missing values is commonly used, it
has the notable disadvantage of leading to a loss of signifi-
cant information, thus reducing the number of data instances
available for model training. In response to this problem,
various strategies have been proposed for filling in missing
values using alternative records, such as forward filling and
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Fig. 2. The proposed approach.

the use of K-Nearest Neighbors. During the MIMIC III data
pre-processing phase, a substantial proportion of crucial data
(between 40 and 55%) is unfortunately lost. However, given
its importance to the forecasting process, deleting this data
was not an option. Faced with this challenge, we decided to
select cases with two or more values in each measure, and
then apply the forward filling method to impute the remaining
missing values.

3) Outliers detection: In our study, special emphasis was
placed on handling outliers within the medical dataset. The
detection of outliers was performed using the interquartile
range method to avoid the indiscriminate removal of records.
Outliers were addressed in two steps: first, they were replaced
with null values, considered missing, and then imputed using
the forward-filling method.

4) Irregular time interval: In the MIMIC III dataset, the
recording of vital signs occurred at irregular intervals, varying
from measurements taken every few minutes to every few
seconds. This irregularity in time intervals presented a chal-
lenge for machine learning techniques that typically operate
with uniformly sampled data. To overcome this challenge, we
aggregated patient vital sign observations, consolidating them
into a single record every hour. This aggregation involved

incorporating key statistical measures, including the standard
deviation, mean, minimum value, maximum value, and count
of all measurements within each hourly interval. As a result,
each record now contains consistent values. In addressing fur-
ther irregularities within the temporal intervals of time-series
data, particularly with regard to balancing measurements for
patients diagnosed with MODS in the dataset, we implemented
a targeted approach. The initial step involved organizing the
data by MODS patient ID and timestamp. Subsequently, each
patient underwent individual processing to tackle irregular
measurements by either eliminating excess or filling gaps with
randomly generated dates. The handling of null values was
achieved through the forward and backward filling methods,
strategically replacing missing values based on predefined
criteria. These meticulous steps ensure the consistency of
measurements across temporal datasets, ultimately enhancing
the quality and reliability of future analyses.

C. Data Preparation

1) Data balancing: The imbalance of classes is one of
the most well-known and crucial issues that can influence the
performance of machine learning algorithms. This issue occurs
when classes are unequally represented. In unbalanced data,
majority classes dominate minority classes. Consequently,
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TABLE II. FEATURES USED IN THIS STUDY

Feature Definition
Age Admission age of the patient
Gender Gender of the patient
Height The measurement of a patient’s vertical size. Used

for assessing body proportions.
Weight The measurement of a patient’s mass. Used for

various health assessments, including medication
dosages.

Diastolic blood pressure The pressure in the arteries when the heart is at
rest. It is an essential indicator of cardiovascular
health.

Systolic blood pressure The pressure in the arteries when the heart
contracts. Important for assessing cardiovascular
health and blood flow.

Fraction inspired oxygen The proportion of oxygen in the air or a gas mix-
ture that is being inhaled. Important for assessing
respiratory function and oxygen delivery.

Glucose The level of glucose in the blood. A critical indi-
cator of glycemic control and metabolic health.

Heart Rate The number of heartbeats per minute. Crucial for
assessing cardiac function and rhythm.

Oxygen saturation The percentage of hemoglobin in the blood that is
saturated with oxygen. It is important for evaluat-
ing respiratory function and oxygenation.

Respiratory rate The number of breaths taken per minute. Essential
for monitoring respiratory health and efficiency.

Temperature The measurement of a patient’s body heat. Crucial
for monitoring body temperature and detecting
fever or hypothermia.

pH The measure of the acidity or alkalinity of the
blood. Essential for evaluating acid-base balance
and overall metabolic health.

Mean blood pressure The average pressure refers to the average pressure
in the arteries throughout one cardiac cycle. It
serves as a crucial indicator of overall blood
pressure.

Glasgow Coma Scale Eye Opening used to evaluate a patient’s level of consciousness
by assessing their eye response.

Glasgow Coma Scale Motor Re-
sponse

used to evaluate a patient’s level of consciousness
based on their motor response.

Glasgow Coma Scale Verbal Re-
sponse

used to evaluate a patient’s level of consciousness
by assessing their verbal response.

since there are not enough instances of the minority class,
an imbalanced classification has the disadvantage that a model
cannot effectively learn the decision boundary, and machine
learning approaches have a higher probability of classifying
each new observation in the majority class. Consequently,
the issue of unbalanced data can lead to the misclassification
of minority classes. However, there is a significant need for
an effective method that could address the class imbalance
problem. In this study, the minority class has 172 samples,
while the majority class has 940 samples, resulting in a
ratio of 5.4:1, as depicted in Fig. 4. Thus, we employed
an unsupervised technique, namely the Synthetic Minority
Oversampling Technique (SMOTE)[25], to address the class
imbalance issue in the datasets as depicted in Fig. 5.

2) Feature scaling: Feature scaling is a preprocessing
technique used in statistics and machine learning to normalize
the values of different features in a dataset. Often, datasets
contain features that vary widely in terms of size, units, and
range. The goal is to adjust the scales of features so that
they are comparable, and no single feature dominates others
due to its units or magnitude. The range of intensive care
unit data points considered in this study is very diverse,
and therefore it is necessary to perform feature scaling to
minimize any effects on model performance. In our study, we
have chosen Z-score scaling as our standardization method.

Fig. 3. Cohort selection diagram from MIMIC dataset.

Fig. 4. Distribution of classes before applying the Smote technique.

This decision stems from the need to make our features
robust to outliers, a crucial aspect in the context of our data.
Unlike other methods, such as normalization, Z-score scaling
minimizes the impact of extreme observations, ensuring a
more balanced scaling of features. Moreover, this approach
facilitates the interpretation of results, especially in the context
of linear models, by providing directly comparable coefficients.
By prioritizing standardization, our goal is to optimize the
stability and convergence of machine learning models, thereby
contributing to more reliable analyses and robust results within
our study.
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Fig. 5. Distribution of classes after applying the Smote technique.

3) Feature selection: Feature selection is an important
component of feature engineering and plays a key role in
improving the capability of machine learning algorithms [26].
The primary contribution of the proposed approach lies in its
capability to carefully select a subset of features of interest
from the set of extracted features, resulting in significantly
improved prediction results. This diagnostic model employs
an optimal feature selection approach. The primary objective
is to emphasize relevant features while reducing the number of
features to address redundancy issues. Overall, this methodol-
ogy aims to minimize the feature set during the construction of
the predictive model, leading to a reduction in computational
costs and an enhancement in overall model performance.
Recent studies highlight the effectiveness of Nature-Inspired
optimization feature selection approaches, contributing to a
notable increase in model performance and efficiency. The
feature selection algorithms employed in this study involve:

a) Grey Wolf Optimization (GWO): The Grey Wolf
Optimizer (GWO) [27] is a nature-inspired optimization algo-
rithm. This algorithm simulates the cooperative and hierarchi-
cal hunting strategy of wolves, and its key steps are as follows:

Surround the Prey (Initialization): The algorithm begins by
randomly placing a population of wolves in the search space,
each representing a potential solution.

Hunting Behavior (Fitness Evaluation): Each wolf’s fitness
is evaluated using a fitness function, measuring its alignment
with optimization goals and reflecting its hunting success in
finding the optimal solution.

Hierarchy: Alpha, Beta, and Delta (Leadership Selection):
Wolves are sorted based on their fitness levels. The top three
wolves are identified as alpha, beta, and delta, establishing a
leadership hierarchy within the pack.

Update Positions (Pack Movement): The positions of
wolves are adjusted using a formula inspired by the social
behavior observed in wolf packs. Alpha, beta, and delta play
pivotal roles in directing the movement of other wolves toward
potentially optimal solutions.

Exploration and Exploitation (Hunting Strategy): The
hierarchy ensures a balance between exploration and exploita-
tion. Alpha, beta, and delta lead the exploration, while other

wolves follow, exploring around their positions to discover
potential solutions.

Surrounding the Prey (Optimization): The algorithm iter-
ates through these stages, progressively refining the positions
of wolves. This mimics the way a wolf pack surrounds prey
during a hunt, improving the chances of finding the optimal
solution.

Criteria for Completion (End of Hunt): The algorithm
continues these stages for a defined number of iterations
or until a predefined termination criterion is met. The final
positions of the wolves represent the optimized solutions.

b) Binary Bat Algorithm (BBA): The Binary Bat Al-
gorithm (BBA), detailed in [28], is an optimization algo-
rithm inspired by the echolocation behavior of bats. It is
specifically engineered for tackling binary or combinatorial
optimization problems. It simulates bats’ use of ultrasonic
pulses for navigation and prey location, incorporating features
like frequency and intensity modulation, as well as global and
local search mechanisms. BBA has demonstrated versatility
and effectiveness in addressing various optimization problems
since its inception.

The Binary Bat Algorithm (BBA) comprises the following
key steps:

Sonar Scanning (Initialization): Initialize a population of
binary bats randomly within the search space, representing
potential feature subsets.

Fitness Echo (Objective Function Evaluation): Evaluate the
fitness of each bat solution using a task-specific objective
function for feature selection.

Leadership Hierarchy (Alpha, Beta, and Delta Bats): Estab-
lish a leadership hierarchy by designating the top-performing
bats as alpha, beta, and delta.

Echo-Driven Movement (Flight Adjustment): Adjust the
positions of bats, guided by alpha, beta, and delta, influencing
the exploration of potential optimal feature subsets.

Adaptive Echolocation (Exploration and Exploitation):
Maintain a balanced exploration and exploitation strategy,
with alpha, beta, and delta leading exploration and other bats
following suit.

Echo-locative Refinement (Optimization Iterations): Itera-
tively refine bat positions, mimicking the echolocation process
and progressively enhancing the chances of identifying an
optimal feature subset.

Termination by Convergence (End of Echolocation): Con-
tinue iterations until a predefined convergence criterion is met
or a specified number of iterations is completed. The final bat
positions represent the optimized feature subsets.

c) Genetic Algorithm (GA): The Genetic Algorithm
(GA) [29] introduced the idea of using a population-based
search inspired by biological evolution to solve optimization
problems. The concept has since evolved, and various adap-
tations of genetic algorithms have been proposed and applied
to different domains, including feature selection in machine
learning.
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The Genetic Algorithm (GA) comprises the following key
steps:

Initialization: Generate an initial population of potential
solutions, each representing a binary feature subset.

Evaluation: Assess the fitness of each solution based on a
fitness function, evaluating its performance with the selected
features.

Selection: Choose individuals from the population to act
as parents for the next generation, favoring those with higher
fitness.

Crossover (Recombination): Combine genetic material
from selected parents to create new offspring.

Mutation: Incorporate minor random alterations to select
individuals to uphold genetic diversity.

Replacement: Substitute a portion of the current population
with the newly generated offspring.

Termination Criteria: Verify if a termination criterion has
been satisfied, which could entail reaching a maximum number
of generations or attaining a designated fitness threshold.

Result Extraction: Extract the final chromosome or feature
subset from the population as the optimized set of features.

D. Machine Learning Algorithms

1) Dynamic Ensemble Selection Models (DES): are a
promising and relevant technique belonging to the category
of MCS approaches. Using base classifiers, they dynamically
choose the most skilled classifiers for every new test item
being classified, with each classifier being competent in a local
’feature space’ region. These approaches have shown superior
results compared to traditional ensemble methods that combine
the results of base classifiers.

a) META-DES (Dynamic Ensemble Selection using
Meta-Learning): [30] is a machine learning algorithm de-
signed for dynamic ensemble selection in the field of classifi-
cation. Its main objective is to approach classification dynam-
ically by treating it as a meta-problem involving determining
whether a particular classifier, chosen from a set of classifiers,
is competent enough to accurately classify specified test data.
This process involves two main steps. First, meta-features such
as a posteriori probability for every label, the classifier’s overall
local accuracy, a vector indicating the difficulty of classifying
neighboring instances, and the classifier’s confidence based
on the perpendicular distance separating the input sample
from its decision boundary are derived. Subsequently, meta-
classifiers exploit these meta-features to predict the ability of
the selected classifier to provide accurate predictions for the
designated test data. The classifiers identified by the meta-
classifiers are then merged to construct a set of classifiers for
the specified test data. META-DES essentially adopts a meta-
perspective on classification, striving to dynamically choose
the best-performing classifiers for a particular task, based on
extracted meta-features.

b) DESP (Dynamic Ensemble Selection with Proba-
bility): [31] is an algorithm designed for dynamically se-
lecting the best classifiers from an ensemble by eliminating
those deemed incompetent. This is done by evaluating the

performance of a single classifier against a random one. The
performance given by the random classifier is determined by
taking 1/M, with M being defined as the total number of classes
that exist in the dataset. Classifiers are dynamically selected
for each test data set on the basis of their performance relative
to the performance achieved by the random neighborhood
classifier selected for the test data set. If the performance of
a classifier outperforms the random one, it is deemed suitable
for selection into the ensemble for this particular test data set.
If no classifier is selected, all classifiers in the ensemble are
chosen for the given test dataset. In summary, the algorithm
aims to create a dynamic ensemble of classifiers by eliminating
incompetent ones and favoring those with better performance
than a random classifier in a specified neighborhood.

c) KNORA-U (K-Nearest-Neighbor Algorithm for Dy-
namic Classifier Selection): The KNORAU algorithm, as out-
lined in [32], is designed to enhance the accuracy of classifying
test samples. It utilizes the concept of k-nearest neighbors
(KNN) by identifying the K closest neighbors for each test
sample based on distances in feature space. KNORAU then
selects classifiers from the initial pool that have accurately
classified at least one neighbor among the K nearest, thereby
forming a sample-specific ensemble. The prediction of the
test sample’s label employs the majority vote rule within this
ensemble, with vote weights determined by each classifier’s
past performance in the K-nearest neighborhood. In essence,
KNORAU strategically leverages classifier performance within
the vicinity of the K-nearest neighbors to improve classifica-
tion accuracy.

d) Dynamic Ensemble Selection KNN (DESKNN):
The DES-KNN method, as introduced in [33], is an ensemble
classifier selection algorithm aimed at identifying an optimal
set from an initial group of classifiers. It employs diversity and
accuracy as selection criteria. Initially, the algorithm identifies
the most accurate classifiers within the competence region
of a given test dataset. It then proceeds to select the most
diverse classifiers among the most accurate ones using a
measure known as the double-fault measure. Percentage-based
selection, informed by prior research, dictates the proportion
of classifiers chosen based on their accuracy and diversity.
These percentages have been determined based on the superior
performance observed in previous studies.

e) KNORA-E (K-Nearest-Neighbor Algorithm for En-
semble): [32] is a dynamic ensemble selection approach. It
aims to choose a set of classifiers from a pool that can
accurately classify all K nearest neighbors in a test dataset
within a specific training set. The selection process is dy-
namic, eliminating classifiers that fail to classify at least one
nearest neighbor correctly. Once the classifier set is identified,
it is used for majority voting in subsequent classifications,
following the majority voting rule. If an ensemble isn’t found
with the initial K value, KNORAE progressively adjusts the K
value downward until at least one classifier set is identified. In
summary, KNORAE, based on DES, seeks to select a robust
set of classifiers capable of correctly classifying the nearest
neighbors of a test point within a specific training set.

f) Multiple-Classifier Behavior (MCB): The MCB
method[34] involves determining the competence region of a
new test sample using the behavioral knowledge space (BKS)
and the accuracy of the local classifier. Output profiles are
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generated for the test sample and its competence region. The
similarity between the output profiles of the test sample and
those of its skill region is measured. Samples with similarities
below a specified threshold are ignored, allowing the size
of the proficiency region to be adjusted. The skill of the
base classifier is assessed on the basis of its classification
accuracy in this adjusted skill region. If a selected classifier
has a significant performance advantage over the others (with
a difference in skill exceeding a predetermined threshold), it
is used for classification. Alternatively, all classifiers are then
combined using the majority vote rule.

g) k-Nearest Output Profiles (KNOP): The KNOP
method[35] consists of the selection of classifiers that have
classified one or more samples within the expertise area of the
sample being queried. The region of competence is determined
by analyzing the decisions made by the base classifier, known
as output profiles. Rather than considering the feature space,
the degree of similarity that exists between the queried sample
and the validation sample is evaluated through the decision
space. Every classifier chosen is allocated a number of votes
equivalent to the actual number of samples in the skill region
where it accurately predicts the label. The cumulative votes
of all core classifiers are then combined to produce the final
ensemble decision.

IV. RESULTS

A. Performance Evaluation Metrics

In our evaluation of the proposed approach, we gauge its
performance using essential performance metrics. Accuracy
assesses the overall correctness of a classification model by
comparing correctly predicted instances to the total. Precision
quantifies the relevance of positive predictions, while recall
evaluates the model’s capability to identify actual positives.
AUC (Area Under the ROC Curve) serves as a binary classifi-
cation metric, representing the area under the curve that plots
the true positive rate against the false positive rate at various
thresholds.

a) Accuracy: Accuracy stands as a prevalent evaluation
metric utilized to assess the overall performance of a classifica-
tion model. It denotes the ratio of correctly predicted instances
to the total number of instances within the dataset.

Accuracy =
Number of Correct Predictions

Total Number of Instances

b) Precision: Precision serves as a metric that quan-
tifies the proportion of true positive predictions out of all
positive predictions made by the model. It offers a measure
of how many of the predicted positive instances are indeed
relevant.

Precision =
True Positives

True Positives + False Positives

c) Recall (Sensitivity or True Positive Rate): The recall,
also referred to as sensitivity or true-positive metric, evaluates
the ratio of true-positive instances that are correctly classified
by the model.

Recall =
True Positives

True Positives + False Negatives

d) AUC (Area Under the Receiver Operating Charac-
teristic Curve): AUC, commonly used for binary classification
problems, is a performance metric that represents the area
under the receiver operating characteristic (ROC) curve. The
ROC curve plots the true positive rate against the false positive
rate at various threshold levels.

The AUC is calculated by integrating the ROC curve:

AUC =

∫
TPR(FPR) dFPR

e) F1-score (F1-measure): The F1-score is a measure
of a model’s accuracy, balancing both precision and recall.

F1-score = 2× Precision × Recall
Precision + Recall

B. Machine Learning Models Analysis

In this section, we delve into the analysis of the perfor-
mance of various dynamic ensemble selection methods for
the classification and prediction of Multiple Organ System
Dysfunction (MODS) using vital signs from the initial 12 hours
in the Intensive Care Unit (ICU). Experiments were conducted
on a computer with an Nvidia GeForce MX 350 graphics card,
an Intel Core i7-10700T processor, and 16 GB of RAM based
on scikit-learn 1.1.2 in Python 3.10.8.

We conducted four experiments, each in search of the
combination of the best classifier and the most efficient fea-
ture selection method for MODS prediction, respectively. Our
approach involved testing various state-of-the-art dynamic en-
semble models with and without bio-inspired feature selection
methods. Model selection was based mainly on comparing
their performance statistically. As shown in Fig. 7, four distinct
results were reported for the tested models: without feature
selection as shown in Fig. 7d, with the genetic algorithm as
shown in Fig. 7a, with the binary bat algorithm as shown in
Fig. 6b, and with the grey wolf optimization as shown in Fig.
7c.

The dataset was split into two subsets: 70% for training
and 30% for testing. The training set was utilized to perform
optimization and training of baseline classifiers using cross-
validation, while the test set was used to evaluate the perfor-
mance of dynamic ensemble selection (DES) models based
on various metrics.Seven state-of-the-art DES models were
applied: META-DES, DESP, KNORA-U, DESKNN, KNORA-
E, MCB and KNOP. In addition, three bio-inspired feature
selection algorithms were used to identify the most appropriate
feature subset: GWO, BBA and GA. The models were applied
to both the entire feature set and the selected features.

a) Analysis of Results using All Features: In this
section, we investigate the performance of dynamic ensem-
ble models with full features. Table III provides details of
the results achieved by the ML models on several evalua-
tion measures. We summarise the results as follows: Using
DESKNN and KNOP with full feature sets produced minor
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TABLE III. PERFORMANCE METRICS FOR ENSEMBLE MODELS WITH DIFFERENT FEATURE SELECTION TECHNIQUES

Ensemble Models Feature Selection Accuracy Precision Recall F1 AUC

KNORA-E
GWO 0.945 0.933 0.957 0.945 0.973
BBA 0.853 0.951 0.741 0.833 0.864
GA 0.906 0.942 0.863 0.901 0.915
Without FS 0.926 0.943 0.905 0.924 0.965

METADES
GWO 0.965 0.972 0.957 0.964 0.984
BBA 0.915 0.934 0.891 0.912 0.959
GA 0.89 0.927 0.843 0.883 0.935
Without FS 0.936 0.944 0.927 0.936 0.973

KNORA-U
GWO 0.942 0.929 0.957 0.943 0.971
BBA 0.84 0.916 0.744 0.821 0.867
GA 0.902 0.929 0.868 0.898 0.917
Without FS 0.915 0.922 0.905 0.913 0.964

DESKNN
GWO 0.94 0.924 0.957 0.94 0.968
BBA 0.836 0.907 0.744 0.817 0.871
GA 0.898 0.922 0.868 0.894 0.909
Without FS 0.891 0.869 0.92 0.894 0.951

MCB
GWO 0.94 0.93 0.949 0.94 0.967
BBA 0.837 0.91 0.744 0.818 0.863
GA 0.898 0.922 0.868 0.894 0.896
Without FS 0.909 0.906 0.912 0.909 0.955

DESP
GWO 0.934 0.927 0.939 0.933 0.978
BBA 0.838 0.913 0.744 0.82 0.852
GA 0.898 0.922 0.868 0.894 0.909
Without FS 0.915 0.932 0.894 0.912 0.962

KNOP
GWO 0.941 0.928 0.954 0.941 0.974
BBA 0.835 0.897 0.751 0.818 0.869
GA 0.873 0.875 0.868 0.871 0.917
Without FS 0.886 0.86 0.92 0.889 0.951

performance (accuracy=0.891, precision=0.869, recall=0.92,
F1-score=0.894, and AUC=0.951) and (accuracy=0.886, preci-
sion=0.86, recall=0.92, F1-score=0.889, and AUC=0.951), re-
spectively.MCB , DESP and KNORA-U improved their perfor-
mance by approximately 3% compared with KNOP. KNORA-
E improved its performance by approximately 1.1% compared
with KNORA-U. The highest performance was achieved with
METADES (accuracy = 0.936, precision = 0.944, recall =
0.927, F1 score = 0.936 and AUC = 0.973). Fig. 6d depicts the
AUC and ROC curves of the models with full features. The
METADES model achieves the highest AUC (0.973), while
the KNOP model achieves the lowest AUC (0.951). Fig. 7d
shows the radar plot for models with full features, and places
the METADES model in the outperforming category.

b) Results Analysis using the Grey Wolf Optimization
(GWO) for Feature Selection: In this section, we investigate
the performance of the Ensemble Dynamic Models with se-
lected features by the GWO. Table III provides details of
the results achieved by the ML models on several evaluation
measures. We summarise the results as follows: Using DESP
with selected feature sets produced minor performance (ac-
curacy = 0.934, precision = 0.927, recall = 0.939, F1-score
= 0.933 and AUC = 0.978) . MCB and DESKNN improved
performance with about 0.6% above DESP. KNORA-U and
KNORA-E improved their performance by approximately 0.2-
0.3% above MCB and DESKNN. The highest performance was
achieved with METADES (accuracy=0.965, precision=0.972,
recall=0.957, F1-score=0.964, and AUC=0.984). Fig. 6c de-
picts the AUC and ROC curves of the models with selected
features by GWO. The METADES model achieves the highest
AUC =0.984, while the MCB model achieves the lowest AUC
(0.967). Fig. 7c shows the Radar Plot of the models with
selected features by GWO and places the METADES Model
in the outperforming category.

c) Results Analysis using the Binary Bat Algorithm
(BBA) for Feature Selection: In this section, we investigate
the performance of the Ensemble Dynamic Models with se-
lected features by the BBA. Table III provides details of
the results achieved by the ML models on several evaluation
measures. We summarise the results as follows: Using KNOP
and DESKNN with selected feature sets produced minor
performance (accuracy=0.835, precision=0.897, recall=0.751,
F1-score=0.818, and AUC=0.869) and (accuracy=0.836, pre-
cision=0.907, recall=0.744, F1-score=0.817, and AUC=0.871),
respectively. MCB and DESP improved performance by
about 0.1–0.2% above KNOP and DESKNN. KNORA-U
and KNORA-E improved their performance by approxi-
mately 1.6% above KNOP and DESKNN. The highest perfor-
mance was achieved with METADES (accuracy=0.915, preci-
sion=0.934, recall=0.891, F1-score=0.912, and AUC=0.959).
Fig. 6b depicts the AUC and ROC curves of the models with
selected features by BBA. The METADES model achieves
the highest AUC of 0.959, while the DESP model achieves
the lowest AUC of 0.852. Fig. 7b shows the Radar Plot of
the models with selected features by BBA and places the
METADES Model in the outperforming category.

d) Results Analysis using the Genetic Algorithm (GA)
for Feature Selection: In this section, we investigate the perfor-
mance of the Ensemble Dynamic Models with selected features
by the GA. Table III provides details of the results achieved by
the ML models on several evaluation measures. We summarise
the results as follows: Using KNOP with selected feature
sets produced minor performance (accuracy = 0.873, precision
= 0.875, recall = 0.868, F1-score = 0.871, and AUC =
0.917). METADES improved their performance by approxi-
mately (1.7)% above KNOP and DESKNN, MCB and DESP
improved performance by about 0.8% above METADES, and
KNORA-U improved performance by about 0.22% above
DESKNN, MCB, and DESP. The highest performance was
achieved with KNORA-E (accuracy=0.902, precision=0.929,
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recall=0.868, F1-score=0.898, and AUC=0.917). Fig. 6a de-
picts the AUC and ROC curves of the models with selected
features by GA. The METADES model achieves the highest
AUC (0.935), while the MCB model achieves the lowest AUC
(0.896). Fig. 7a shows the Radar Plot of the models with
selected features by GA and places the KNORA-E Model in
the outperforming category.

e) Comparison Between All Models: In this paper, we
investigate the performance of dynamic ensemble models uti-
lizing all features as well as features selected using bio-inspired
feature selection algorithms. As shown in Table III, a confusion
matrix in Fig. 8 is used to depict and display the performance
of dynamic ensemble models using GWO as a feature selection

technique and to give an overview of the model’s classification
errors. The METADES model with GWO as feature selection
technique achieved the highest performance compared to both
complete features and features selected by GA and BBA, with
an accuracy of 96.5%,a precision of 97.2%, a recall of 95.7%,
an F1-score of 96.4%, and an AUC of 98.4%. Conversely, the
METADES model with GA-selected features demonstrated the
lowest performance.

These findings emphasize the effectiveness of the approach
using the METADES model and the GWO feature selection
method in predicting patients at risk of developing MODS,
suggesting its potential for clinical application.

www.ijacsa.thesai.org 854 | P a g e

(a) ROC Curve for DES Models using GA as FS. (b) ROC Curve for DES Models using BBA as FS.

(c) ROC Curve for DES Models using GWO as FS. (d) ROC Curve for Dynamic Ensemble Models without Feature Selection.

Fig. 6. ROC curves of dynamic ensemble models with and without feature selection techniques.
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(a) Radar Plot for DES Models using GA as FS. (b) Radar Plot for DES Models using BBA as FS.

(c) Radar Plot for DES Models using GWO as FS. (d) Radar Plot for Dynamic Ensemble Models without Feature Selection.

Fig. 7. Radar plots of dynamic ensemble models with and without feature selection techniques.
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(a) Confusion Matrix for the DESKNN Model. (b) Confusion Matrix for the DESP Model. (c) Confusion Matrix for the KNOP Model.

(d) Confusion Matrix for the KNORAE Model. (e) Confusion Matrix for the KNORAU Model. (f) Confusion Matrix for the MCB Model.

(g) Confusion Matrix for the METADES Model.

Fig. 8. Confusion matrix for dynamic ensemble models using GWO as feature selection techniques.
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V. LIMITATIONS AND FUTURE DIRECTIONS

Although our proposed approach is promising for the early
prediction of MODS in the ICU, it has certain limitations:
Firstly, the dataset used in this study includes only MIMIC III
patients, specifically those admitted to the intensive care units
(ICUs) of Beth Israel Deaconess Medical Center in Boston,
Massachusetts, USA. To ensure the generalizability of the
model, we are planning to test it with other real-world datasets.
Secondly, although dynamic ensemble models outperform deep
learning models in terms of speed, the use of time-series
datasets using deep learning methods such as LSTM and
CNN may enhance performance. Thirdly, to be clinically
accepted as a decision-support system, the approach must be
interpretable. For this reason, we plan to study various methods
of explainability, such as eXplainable Artificial Intelligence
(XAI). Future studies will address all these limitations.

VI. CONCLUSION

In this work, we proposed a decision support system for
the early prediction of Multi-Organ Dysfunction Syndrome
(MODS) in the intensive care unit (ICU). Utilizing only non-
invasive features and time-series records gathered from the
initial 12 hours of admission in the ICU, the system aimed to
support doctors by accelerating their decision-making process.
We explored the effectiveness of dynamic ensemble selection
models in predicting the risk of developing MODS within
the ICU. We compared the performance of models with full
features and with feature selection methods, evaluating three
nature-inspired metaheuristic optimization feature selection
techniques: the binary bat algorithm (BBA), grey wolf opti-
mization (GWO), and genetic algorithm (GA) in order to select
the optimal feature subset.

The proposed system was trained and evaluated on a cohort
of 1,392 patients extracted from the MIMIC III dataset. The
METADES model with GWO as the feature selection tech-
nique achieved the highest performance compared to models
using all features or features selected by other methods. It
demonstrated an accuracy of 96.5%, a precision of 97.2%, a
recall of 95.7%, an F1-score of 96.4%, and an AUC of 98.4%.
Conversely, the METADES model with GA-selected features
exhibited the lowest performance.

These findings highlighted the effectiveness of our ap-
proach using the METADES model and the GWO feature
selection method in predicting patients at risk of developing
MODS, suggesting its promising potential for clinical applica-
tion.
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